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Abstract

For a graph G, consider the pairs of edge-disjoint matchings whose
union consists of as many edges as possible. Let H be the largest match-
ing among such pairs. Let M be a maximum matching of G. We show
that 5/4 is a tight upper bound for |M |/|H|.
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We consider finite, undirected graphs without multiple edges or loops. Let
V (G) and E(G) denote the sets of vertices and edges of a graph G, respectively.
The cardinality of a maximum matching of a graph G is denoted by ν(G).

For a graph G define B2(G) as follows:

B2(G) ≡ {(H, H ′) : H, H ′ are edge-disjoint matchings of G},

and set:

λ2(G) ≡ max{|H|+ |H ′| : (H, H ′) ∈ B2(G)}.

Define:

α2(G) ≡ max{|H| , |H ′| : (H,H ′) ∈ B2(G) and |H|+ |H ′| = λ2(G)},
M2(G) ≡ {(H, H ′) : (H, H ′) ∈ B2(G), |H|+ |H ′| = λ2(G), |H| = α2(G)}.
∗The work on this paper was supported by a grant of the Armenian National Science and

Educational Fund.
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It is clear that α2(G) ≤ ν(G) for all G. By Mkrtchyan’s result [4], reformu-
lated as in [2], if G is a matching covered tree then the inequality turns to an
equality. Note that a graph is said to be matching covered (see [5]) if its every
edge belongs to a maximum matching (not necessarily a perfect matching as it
is usually defined, see e.g. [3]).

The aim of this paper is to obtain a tight upper bound for ν(G)
α2(G) . We prove

that 5
4 is an upper bound for ν(G)

α2(G) , and exhibit a family of graphs which shows
that 5

4 can not be replaced by any smaller constant. Terms and concepts that
we do not define can be found in [1, 3, 6].

Let A and B be matchings of a graph G.

Definition. A path (or an even cycle) e1, e2, ..., el (l ≥ 1) is called A-B al-
ternating if the edges with odd indices belong to A\B and others to B\A, or
vice-versa.

Definition. A-B alternating path P is called maximal if there is no other A-B
alternating path that contains P as a proper subpath.

The sets of A-B alternating cycles and maximal alternating paths are de-
noted by C(A,B) and P (A,B), respectively.

The set of the paths from P (A,B) that have even (odd) length is denoted
by Pe(A,B) (Po(A, B)).

The set of the paths from Po(A,B) starting from an edge of A (B) is denoted
by PA

o (A,B) (PB
o (A,B)).

Note that every edge e ∈ A ∪ B either belongs to A ∩ B or lies on a cycle
from C(A,B) or lies on a path from P (A,B).

Moreover,

Property 1 (a) if F ∈ C(A,B) ∪ Pe(A,B) then A and B have the same
number of edges that belong to F ,

(b) if P ∈ PA
o (A,B) then the difference between the numbers of edges that lie

on P and belong to A and B is one.

These observations immediately imply:

Property 2 If A and B are matchings of a graph G then

|A| − |B| = |PA
o (A,B)| − |PB

o (A, B)|.

Berge’s well-known theorem states that a matching M of a graph G is max-
imum if and only if G does not contain an M -augmenting path [1,3,6]. This
theorem immediately implies:

2



Property 3 If M is a maximum matching and H is a matching of a graph G
then

PH
o (M,H) = ∅,

and therefore, |M | − |H| = |PM
o (M,H)|.

The proof of the following property is similar to the one of property 3:

Property 4 If (H, H ′) ∈ M2(G) then PH′
o (H,H ′) = ∅.

Let G be a graph. Over all (H,H ′) ∈ M2(G) and all maximum matchings M
of G, consider the pairs ((H, H ′),M) for which |M ∩H| is maximized. Among
these, choose a pair ((H, H ′),M) such that |M ∩H ′| is maximized.

From now on H, H ′ and M are assumed to be chosen as described above.
For this choice of H, H ′ and M , consider the paths from PM

o (M, H) and define
MA and HA as the sets of edges lying on these paths that belong to M and H,
respectively.

Lemma 1 C(M,H) = Pe(M, H) = PH
o (M, H) = ∅.

Proof. Property 3 implies PH
o (M,H) = ∅. Let us show that C(M, H) =

Pe(M,H) = ∅. Suppose that there is F0 ∈ C(M, H) ∪ Pe(M,H). Define:

M ′ ≡ [M\E(F0)] ∪ [H ∩ E(F0)].

Consider the pair ((H, H ′),M ′). Note that M ′ is a maximum matching, and

|H ∩M ′| > |H ∩M |,

which contradicts |H ∩M | being maximum.

Corollary 1 M ∩H = M\MA = H\HA.

Lemma 2 Each edge of MA\H ′ is adjacent to two edges of H ′.

Proof. Let e be an arbitrary edge from MA\H ′. Note that e ∈ M , e /∈ H,
e /∈ H ′. Now, if e is not adjacent to an edge of H ′, then H ∩ (H ′ ∪{e}) = ∅ and

|H|+ |H ′ ∪ {e}| > |H|+ |H ′| = λ2(G),

which contradicts (H, H ′) ∈ M2(G).
On the other hand, if e is adjacent to only one edge f ∈ H ′, then consider

the pair (H, H ′′), where H ′′ ≡ (H ′\{f}) ∪ {e}. Note that

H ∩H ′′ = ∅, |H ′′| = |H ′|

and
|H ′′ ∩M | > |H ′ ∩M |,

which contradicts |H ′ ∩M | being maximum.

3



Lemma 3 C(MA,H ′) = Pe(MA, H ′) = PMA
o (MA,H ′) = ∅.

Proof. First of all, let us show that C(MA,H ′) = Pe(MA,H ′) = ∅. For the sake
of contradiction, suppose that there is F0 ∈ C(MA, H ′) ∪ Pe(MA,H ′). Define:

H ′′ ≡ [H ′\E(F0)] ∪ [MA ∩ E(F0)].

Consider the pair of matchings (H, H ′′). Note that due to the definition of
an alternating path we have MA ∩H = ∅, therefore

H ∩H ′′ = ∅,

|H|+ |H ′′| = |H|+ |H ′| = λ2(G)

(see (a) of property 1).
Thus (H,H ′′) ∈ M2(G) and

|H ′′ ∩M | > |H ′ ∩M |,

which contradicts |H ′ ∩M | being maximum.
On the other hand, the end-edges of a path from PMA

o (MA,H ′) are from MA

and are adjacent to only one edge from H ′ contradicting lemma 2. Therefore,
PMA

o (MA, H ′) = ∅.

Lemma 4 |H ′| = |PH′
o (MA, H ′)|+ |HA|+ ν(G)− α2(G).

Proof. Due to property 2

|H ′| − |MA| = |PH′
o (MA, H ′)| − |PMA

o (MA,H ′)|,

and due to (b) of property 1 and property 3

|MA| − |HA| = |PM
o (M, H)| = |M | − |H| = ν(G)− α2(G).

By lemma 3 PMA
o (MA,H ′) = ∅, therefore,

|H ′| = |PH′
o (MA,H ′)|+ |MA| = |PH′

o (MA, H ′)|+ |HA|+ ν(G)− α2(G).

Lemma 5 Let P ∈ Po(M, H) and assume that P = m1, h1,m2, ..., hl−1, ml,
l ≥ 1,mi ∈ M, 1 ≤ i ≤ l, hj ∈ H, 1 ≤ j ≤ l− 1. Then l ≥ 3 and {m1,ml} ⊆ H ′.

Proof. Let us show that m1, ml ∈ H ′. If l = 1 then P = m1, m1 ∈ M\H,
and m1 is not adjacent to an edge from H as P is maximal. Thus, m1 ∈ H ′ as
otherwise we could enlarge H by adding m1 to it which contradicts (H, H ′) ∈
M2(G). Thus suppose that l ≥ 2. Let us show that m1 ∈ H ′. If m1 /∈ H ′ then
define

H1 ≡ (H\{h1}) ∪ {m1}.
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Clearly, H1 is a matching, H1 ∩H ′ = ∅ and |H1| = |H|, which means that
(H1,H

′) ∈ M2(G). But
|H1 ∩M | > |H ∩M |,

which contradicts |H ∩M | being maximum. Similarly, it could be shown that
ml ∈ H ′.

Now let us show that l ≥ 3. Due to property 4, PH′
o (H, H ′) = ∅. Thus there

is i, 1 ≤ i ≤ l, such that mi ∈ M\H ′. Since {m1,ml} ⊆ H ′, we have l ≥ 3.

Corollary 2 |HA| ≥ 2(ν(G)− α2(G)).

Proof. Due to lemma 5 every path P ∈ Po(M,H) has length at least five,
therefore it contains at least two edges from H. Due to property 3, there are

|Po(M, H)| = |PM
o (M, H)| = ν(G)− α2(G)

paths from Po(M, H), therefore

|HA| ≥ 2(ν(G)− α2(G)).

Corollary 3 Every vertex lying on a path from P (M,H) = PM
o (M, H) is in-

cident to an edge from H ′.

Proof. Suppose w is a vertex lying on a path from P (M, H) = PM
o (M, H) and

assume that e is an edge from MA incident to the vertex w. Clearly, if e ∈ H ′

then the corollary is proved therefore we may assume that e /∈ H ′. Note that
e ∈ MA\H ′ therefore due to lemma 2 e is adjacent to two edges from H ′. Thus
w is incident to an edge from H ′.

Let Y denote the set of the paths from P (H, H ′) starting from the end-edges
of the paths from PM

o (M, H). Note that Y is well-defined since due to lemma
5 these end-edges belong to H ′. According to property 4, Y ⊆ Pe(H, H ′), thus
the set of the last edges of the paths from Y is a subset of H. Let us denote it
by HY .

Lemma 6

(a) |Y | = 2(ν(G)−α2(G)) and the length of the paths from Y is at least four,

(b)
∣∣∣PH′

o (MA,H ′)
∣∣∣ ≥ ν(G)− α2(G).

Proof. (a) Due to property 4, all end-edges of the paths from PM
o (M, H) lie

on different paths from Y . Therefore |Y | = 2|PM
o (M,H)| = 2(ν(G)− α2(G)).

Since the edges from HY are adjacent to only one edge from H ′, we conclude
that they do not lie on a path from PM

o (M, H) (corollary 3). Thus, due to
corollary 1, HY ⊆ M ∩H. Furthermore, as the first two edges of a path from
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Y lie on a path from PM
o (M,H), and the last edge does not, we conclude that

its length is at least four.
(b) From HY ⊆ M ∩H we get

|M ∩H| ≥ |HY | = |Y | = 2|PM
o (M, H)| = 2(ν(G)− α2(G)).

On the other hand, every edge from HY is adjacent to an edge from H ′\M ,
which is an end-edge of a path from PH′

o (MA,H ′), therefore

2(ν(G)− α2(G)) ≤ |M ∩H| ≤ 2
∣∣∣PH′

o (MA, H ′)
∣∣∣

or
ν(G)− α2(G) ≤

∣∣∣PH′
o (MA,H ′)

∣∣∣ .

Theorem For every graph G the inequality ν(G)
α2(G) ≤ 5

4 holds.

Proof. Lemma 4, statement (b) of lemma 6 and corollary 2 imply

α2(G) ≥ |H ′| =
∣∣∣PH′

o (MA,H ′)
∣∣∣ + |HA|+ ν(G)− α2(G) ≥ 4(ν(G)− α2(G)).

Therefore, ν(G)
α2(G) ≤ 5

4 .

Figure 1: ν(G)
α2(G) = 5

4

Remark 1. We have given a proof of the theorem which is based on the
structural lemma 4, statement (b) of lemma 6 and corollary 2. It is not hard
to see that the theorem can also be proved directly using only statement (a) of
lemma 6. As the length of every path from Y is at least four, there are at least
two edges from H ′ lying on each path from Y , therefore
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α2(G) ≥ |H ′| ≥ 2|Y | = 4(ν(G)− α2(G)).

Remark 2. There are infinitely many graphs G for which

ν(G)
α2(G) = 5

4 .

In order to construct one, just take an arbitrary graph F containing a perfect
matching. Attach to every vertex v of F two paths of length two, as it is shown
on the figure 1a.

Figure 2: ν(Gn)
λ2(Gn)−α2(Gn) = n

Let G be the resulting graph. Note that:

ν(G) = |V (F )|
2 + 2 |V (F )| = 5|V (F )|

2 .

Let us show that for every pair of disjoint matchings (H, H ′) satisfying |H|+
|H ′| = λ2(G) and e ∈ E(F ) we have e /∈ H ∪H ′. On the opposite assumption,
consider an edge e ∈ E(F ) and a pair (H, H ′) with |H| + |H ′| = λ2(G) and
e ∈ H ∪H ′. Note that without loss of generality, we may always assume that
H and H ′ contain the edges shown on the figure 1b.

Now consider a new pair of disjoint matchings (H1,H
′
1) obtained from (H, H ′)

as it is shown on figure 1c.
Note that |H1|+ |H ′

1| = 1+ |H|+ |H ′| > λ2(G), which contradicts the choice
of (H,H ′), therefore e /∈ H∪H ′ and λ2(G) = 4 |V (F )|, α2(G) = 2 |V (F )|, hence

ν(G)
α2(G) = 5

4 .
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Remark 3. In contrast with the bound ν(G)
α2(G) ≤ 5

4 , it can be shown that for

every positive integer n ≥ 2 there is a graph Gn such that ν(Gn)
λ2(Gn)−α2(Gn) = n.

Just consider the graph Gn shown on the figure 2.
Note that ν(Gn) = n, λ2(Gn) = n + 1, α2(G) = n hence

ν(Gn)
λ2(Gn)−α2(Gn) = n.
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